The transforming growth factor βs (TGF-βs) belong a family of structurally related, dimeric, disulfide-linked polypeptides that includes five TGF-β isoforms, activins, inhibins, Müllerian inhibiting substance, bone morphogenic proteins, and products of the Xenopus Vg1 and Drosophila decapentaplegic (dpp) genes (reviewed in Rizzino, 1988; Massagué, 1990; Roberts and Sporn, 1990). In mammals, three isoforms of TGF-β (TGF-β1, -β2, and -β3) have been identified. TGF-βs are multifunctional cytokines that influence numerous cellular processes. They can regulate cell proliferation and differentiation positively or negatively depending on cell type and have been implicated in such diverse physiological events as angiogenesis, immune function, steroidogenesis, and tissue remodelling and repair. Since all of these events take place in the uterine endometrium during the oestrous cycle and pregnancy and during the establishment of pregnancy, TGF-βs are likely candidates to regulate some of these reproductive functions.

Biological effects of TGF-β are mediated through interactions with cell surface receptors, designated type I, II and III (reviewed in Massagué and Weis-Garcia, 1996). Type I and II receptors are transmembrane proteins containing cytoplasmic serine/threonine kinase domains. TGF-β binds the type II but not type I receptor. The type I receptor recognizes the ligand bound type II receptor with which it forms a heteromeric complex. The type I receptor then undergoes phosphorylation, which is probably catalysed by the type II kinase. Signalling downstream of the type I receptor involves the phosphorylation of one or more cytoplasmic proteins referred to as Smads, complex formation of Smad-2, -3 and -4, and their translocation to the nucleus and association with transcription factors. The type III receptor is a proteoglycan with no cytoplasmic kinase domain and may be involved in presentation of TGF-β to the type II receptor.

TGF-β expression during the oestrous or menstrual cycle: the role of ovarian steroids

The uterine endometrium is a dynamic organ that undergoes remarkable periodic growth, remodelling and breakdown. The cells that compose the endometrium – primarily luminal and glandular epithelium, stroma and endothelium – undergo periods of proliferation, migration, differentiation and death. In the endometrium, these activities are regulated by ovarian steroids while, in other cell systems, many of these processes are influenced by the TGF-β polypeptides (Rizzino, 1988; Massagué, 1990; Roberts and Sporn, 1990).

Expression of TGF-β in endometrium has been characterized in a small number of species during pregnancy and in fewer during oestrous and menstrual cycles. Information is not available on cell-specific and temporal expression of all three mammalian TGF-β isoforms for every species investigated, and there are conflicting reports on both endometrial TGF-β expression and the role of steroids in regulating their expression. An explanation for this may be that the TGF-β isoforms have complex groups of enhancer and silencer regions within their respective promoter regions, but, to our knowledge, none has been reported to have complete steroid response elements. Although this does not preclude their presence further upstream, it indicates that the effects of steroids on TGF-β gene expression may be indirect. In addition, TGF-βs are expressed differentially in various cell types and may be upregulated in one compartment and not another. Furthermore, bioactivity of TGF-βs is regulated at both transcription and at latent protein check points, and transcription does not necessarily indicate protein production (Asoian et al., 1987). Results from the use of in vitro cell model systems must be carefully evaluated in light of the demonstration that TGF-β is expressed constitutively in cells
grown on plastic, but downregulated in cells grown on an extracellular matrix (Streuli et al., 1993). In addition, TGF-β1 expression is known to be autinductive and influenced by other growth factors in several cell types, including human endometrial stromal cells (Arici et al., 1996). For a clear definition of the role of steroids, additional studies are required that demonstrate consistency of cell-specific expression of TGF-βs in response to both exogenous steroids and the endogenous steroid milieu of the cycle and pregnancy.

In women, expression of TGF-β1, -β2 and -β3 and the type II receptor occurs in all cell types of the endometrium (Chegini et al., 1994a). Within the functionalis region, expression was greatest in luminal and glandular epithelial cells during the late proliferative (days 9–14) to early-to-mid secretory phase (days 16–25) and diminished in the late secretory phase (days 26–28). These results indicate that, after oestrogen priming, TGF-β expression within specific regions of the endometrium is upregulated during times of increasing plasma progesterone concentrations and downregulated during progesterone withdrawal. Mashburn et al. (1994) reported that TGF-β1 expression in the stroma was greatest during the secretory phase of the menstrual interval and suggested that it may regulate epithelial cell proliferation and differentiation. Within the stroma, TGF-β2 expression increases during the secretory phase (Gold et al., 1994), and addition of progesterone to the culture medium of endometrial explants enhances production of mRNA encoding TGF-β2 (Bruner et al., 1995). Arici et al. (1996) provided evidence that stromal TGF-β3 expression may be negatively influenced by progesterone and upregulated by oestrogen. Concentrations of mRNA encoding TGF-β3 were observed to be greatest in proliferative phase endometrium compared with those in secretory phase endometrium, decidual tissue or endometrium prepared from women ingesting progestin.

In rodents, oestrogen administration results in at least a transient increase in the expression of TGF-β isoforms and a decrease in the TGF-β type II receptor. Das et al. (1992) observed a rapid, temporary increase in TGF-β2, but not in expression of mRNA encoding TGF-β3, in the mouse uterus in response to oestrogen administration. Takahashi et al. (1994) reported that diethylstilboestrol (DES) administration to prepubertal mice resulted in increased uterine expression of TGF-β1, -β2 and -β3 mRNA and protein and a decrease in TGF-β binding. Perhaps significant was the observation that increases in steady state concentrations of mRNA occurred within 30 min for TGF-β3 and 3 h for TGF-β1 and -β2. Concentrations of all transcripts declined to baseline values within 6 h, although protein expression was more prolonged and localized primarily to epithelium. Wada et al. (1996) observed a decline in TGF-β type II receptors after administration of oestrogen, as well as progesterone and testosterone. In rats, all three TGF-β isoforms were immunolocalized in the endometrium and staining intensities were stronger at dioestrus II and pro-oestrus than at oestrus or dioestrus I (Chegini et al., 1994b). Oestrogen administration resulted in increased TGF-β2 in uterine fluids and increased expression of mRNA encoding TGF-β2 in the uterus (Schneider et al., 1996).

In ewes, endometrial expression of mRNAs encoding TGF-β1, -β2 and -β3 was greatest during pro-oestrus, coincident with low plasma progesterone concentrations and increasing oestrogen concentrations (Doré et al., 1996a,b). TGF-β1 and -β2 immunostaining was prominent in the luminal and glandular epithelium and diffuse in stroma. TGF-β3 immunostaining was intense in the subepithelial stroma of caruncles and diffuse in epithelial cells on the day preceding oestrus (day 16) but it was barely detectable at other stages of the cycle or in early pregnancy. Oestrogen treatment of ovariectomized ewes resulted in increased expression of mRNAs encoding all three TGF-β isoforms. Progesterone treatment diminished the effects of oestrogen on the expression of TGF-β1 and -β2 but not TGF-β3.

It is apparent that there are differences among species in the regulation of endometrial TGF-β expression. The high expression at late dioestrus and pro-oestrus reported in rats and ewes may indicate a role for these growth factors in the restructuring of the endometrium that occurs during the transition from one cycle to the next. In contrast, the increased production of the TGF-βs in the late proliferative and secretory phase of the menstrual cycle indicates a role in restraining cell proliferation, promoting differentiation (Mashburn et al., 1994; Tang et al., 1994) and inhibiting extracellular matrix degradation (Bruner et al., 1995) (Fig. 1). The differences between endometrial TGF-β expression in women and nonprimate species are difficult to reconcile. Regulation of TGF-β expression is complex and the role of steroids is not well understood. Events unique to the primate reproductive cycle are a prolonged proliferative phase with extensive tissue growth, and menstruation characterized by extensive breakdown. Differences in endometrial physiology among species may require different mechanisms of regulation.

The TGF-βs are recognized to regulate some cellular processes through their stimulatory action on extracellular matrix (ECM) formation, cellular matrix binding receptors and increased synthesis of protease inhibitors and repression of proteases that degrade ECM (Rizzino, 1988). Matrix metalloproteinases (MMP) have been identified as an important class of protease involved in endometrial remodelling (Osteen et al., 1994; Salamonsen and Woolley, 1996 and references therein). In women, endometrial MMP expression appears to be negatively regulated by progesterone. Expression of MMPs is suppressed during the secretory phase of the cycle and increased at menstruation, after progesterone withdrawal. In addition, progesterone inhibits MMP production by endometrial stromal cells in vitro. Recent studies indicate that TGF-β plays an important role in regulating MMP production in the endometrium during the menstrual cycle. Osteen and colleagues (Bruner et al., 1995) examined stromal–epithelial paracrine regulation of matrilysin, an epithelial-specific MMP of the stromelysin family: their results suggest that TGF-β2 is the progesterone-induced, stromal-derived paracrine factor that suppresses epithelial matrilysin production. The suppressive activity may be mediated through interaction with a TGF-β inhibitory element in the gene promoter region similar to that demonstrated for the stromelysin 1 gene in rat fibroblasts (Kerr et al., 1990).

The TGF-βs are likely candidates to mediate, in part, the effects of ovarian steroids on the expression of other classes of protease in the endometrium. For example, the plasminogen activators (PA), serine proteases that have been identified in the endometrium, are regulated by ovarian steroids and are believed to play a role in the menstrual process (Casslen et al., 1989).
Production of PAs is suppressed under progesterone dominance and increases with progesterone withdrawal. Progesterone inhibits stromal synthesis of PA and stimulates synthesis of plasminogen activator inhibitor 1 (PAI-1) in vitro. TGF-β has been shown to have similar effects on PA and PAI-1 expression in several cell types, including trophoblast (Graham, 1997 and references within). The role of TGF-β in regulating endometrial PA expression has yet to be determined. Casey and MacDonald (1996) suggested that TGF-β may oppose some actions of progesterone in the endometrium but not others. This view was based on the observation that TGF-β acts in concert with progesterone to

Fig 1. Some proposed sites and actions of transforming growth factor β (TGF-β) in the endometrium and conceptus. (1) Epithelial–stromal interactions; (2) predecidualization and decidualization of stromal cells; (3) trophectoderm cell attachment and (4) migration; (5) trophoblast cell differentiation; (6) regulation of depth of invasion; (7) immunomodulation; and (8) embryonic development.
promote stromal decidualization but opposes the stimulatory action of progesterone on expression of stromal enkephalinase.

TGF-β function in endometrium during pregnancy

Proposed regulatory roles of uterine TGF-β during pregnancy include, but are not limited to: decidualization; apoptosis; trophoblast attachment, growth, invasion and differentiation; immunotolerance; cytokine and hormone production; and embryogenesis (some of which are illustrated; Fig. 1). A recurrent observation of studies that characterized the expression of TGF-β in the endometrium during pregnancy was the identification of TGF-β1 or TGF-β2 at the fetal–maternal interface (Kauma et al., 1990; Tamada et al., 1990; Das et al., 1992; Chen et al., 1993; Sellick et al., 1994; Lea et al. 1995; Lennard et al., 1995). TGF-β in the extracellular matrix of decidual cells (Tamada et al., 1990; Graham et al., 1992) may provide a reservoir of latent TGF-β that is activated by trophoblast-derived proteinases (Graham et al., 1992). The identification of TGF-β type I, II and III receptors in the endometrium indicates that these cells are responsive to maternal or embryonic TGF-β (Roelen et al., 1994). Slager et al. (1993) provided evidence to support the view that TGF-β may be involved in implantation by demonstrating that the injection of neutralizing antibodies, specific for TGF-β2, into the blastocoele of mouse embryos markedly reduced the rate of implantation.

Dungy et al. (1991) suggested that TGF-β1 regulates trophoblast invasion and proliferation on the basis of their demonstration that peak expression of mRNA encoding TGF-β1 in human placenta occurred at weeks 17 and 34 of gestation, time points coincident with cessation of trophoblast invasion and cessation of absolute trophoblast growth, respectively. Graham and Lala (1991) demonstrated that exogenous TGF-β1, or conditioned medium from decidual cultures, suppressed trophoblast invasion in vitro. Treatment of decidua cell culture medium with anti-TGF-β antiserum neutralized the anti-invasive activity. Furthermore, the anti-invasive effect of TGF-β may have been mediated by induction of tissue inhibitor of metalloproteinases (TIMP) since neutralizing antibody to TIMP relieved suppressive activity and immunoneutralization of TGF-β resulted in diminished expression of mRNA encoding TIMP.

The invasive activity of human trophoblast cells has been shown to be inhibited by serine proteinase inhibitors as well as inhibitors of MMPs in vitro (Yagel, et al., 1988). TGF-β1 inhibits human cytotrophoblast production of the serine proteinase urokinase-type plasminogen activator (uPA) and increases expression of plasminogen activator inhibitor-1 (Graham, 1997). The ability of PAs to generate plasmin is an important function related to cellular invasiveness since plasmin can cleave most proteins of the ECM and activate several MMPs (Vassalli et al., 1991). In addition, plasmin may activate latent TGF-β stored in ECM (Lyons et al., 1990) which, in turn, may limit invasion by inhibiting MMP and PA production and stimulating their degradation. Regulation of plasmin activity may also promote haemostasis during implantation by inhibition of fibrinolysis and vasoactive protein production (Schatz and Lockwood, 1993).

TGF-β1 stimulates human cytotrophoblast cells to produce oncofetal fibronectin which may be deposited in the ECM at the sites of trophoblast–endometrial attachment (Feinberg et al., 1994). These results indicate that fibronectin may serve as a trophoblast–uterine connecting protein that facilitates trophoblast attachment and implantation. It has been suggested that TGF-β regulates trophoblast invasion by stimulating production of adhesive ECM proteins, such as oncofetal fibronectin, and increasing expression of trophoblast cell ECM receptors (Irving and Lala, 1995). This concept is supported by data demonstrating that trophoblast migration is dependent on expression of αv and β3 integrin subunits, the receptor for fibronectin. In addition to its role in regulation of trophoblast attachment, migration and invasion, oncofetal fibronectin localized to the fetal–maternal junction may play an immunomodulatory role in pregnancy maintenance (Feinberg et al., 1994). Fibronectin is recognized to influence leukocyte adhesiveness, chemotaxis and migration. Mice lacking a functional TGF-β1 gene exhibit leukocyte infiltration into multiple organs and a lethal wasting syndrome (Hines et al., 1994). Infiltrating leukocytes exhibited increased adhesion to ECM proteins and endothelial cells, indicating alterations in leukocyte adhesive properties. Treatment of the cells with peptides containing cell- and heparin-binding sequences to fibronectin reduced cell adhesion. Treatment of the knockout mice with the same peptides blocked leukocyte infiltration and moderated the wasting syndrome. Results indicate that TGF-induced fibronectin deposition at the fetal–maternal interface may attenuate maternal leukocyte infiltration.

TGF-β at the site of implantation is believed to play a significant role in establishing maternal immunotolerance to the allo-genic conceptus. Regulation of immune response by TGF-β varies from chemotaxis to suppression of macrophage and T-cell activity. Leukocytic cells within the mouse decidua express TGF-β2 transcripts (Lea et al., 1992) and release a potent immunosuppressive factor that is closely related to TGF-β2 but of a slightly lower mass (Clark et al., 1990). In addition, mouse amniotic fluid contains an immunosuppressive factor that has biological properties similar to TGF-β2 (Altman et al., 1990). The activities of this factor are neutralized by anti-TGF-β2 specific antibodies but not by anti-TGF-β1-specific antiserum. In mares, high TGF-β1 expression was detected at the interface between the invasive trophoblast cells, which form structures referred to as endometrial cups, and endometrial epithelium (Lennard et al., 1995). TGF-β1 expression was associated primarily with leukocytes and endometrial epithelium, and the intensity of the TGF-β signal was proportional to the degree of leukocyte infiltration. Similarly, mRNA encoding TGF-β2 was identified in maternal leukocytes in the region of endometrial cups (Lea et al., 1995). Approximately 50% of the TGF-β2-positive cells exhibited biochemical and morphological properties characteristic of eosinophils. It has been suggested for both mice (Clark et al., 1990) and mares (Lea et al., 1995) that TGF-β production by suppressor cells at the fetomaternal interface serves to protect the conceptus from immunological attack by maternal effector cells.

The TGF-βs are recognized to have a profound influence on proliferation and differentiation of placental cells. TGF-β1 and TGF-β2 inhibit proliferation of first trimester human cytotrophoblast cells in vitro (Graham et al., 1992). In addition, TGF-β1 stimulates multinucleated cell formation by both first trimester and term trophoblast cells. Since the term cells did not proliferate in culture, multinucleated cell formation was not
necessarily associated with the antiproliferative action of TGF-β. Addition of neutralizing antibody, which recognized both TGF-β1 and TGF-β2, negated the effects of exogenous TGF-β. Antibody alone stimulated proliferation above control concentrations of first term trophoblast cells and inhibited multinucleated cell formation, indicating the presence of endogenous TGF-β activity. However, Morrish et al. (1991) demonstrated that TGF-β1 inhibited epidermal growth factor-induced syncytial formation by human cytotrophoblast and diminished production of hCG and placental lactogen.

In contrast to the antiproliferative action of TGF-β on human trophoblast, Munson et al. (1996) demonstrated that TGF-β1 and TGF-β2 stimulated proliferation of bovine trophoblast and fetal endometrial epithelial cell lines. Differences in the expression and response to TGF-β among species may be explained, in part, by different placental types. The placenta of ungulates, unlike those of primates and rodents, form neither decidualized endometrium nor invasive or syncytial trophoblast tissue. Instead, placentation involves apposition, adhesion and attachment to both caruncular and intercaruncular regions of the endometrial epithelium. A limited, unique, syncytial formation occurs between migrating trophoblast binucleate cells and endometrial epithelial cells of the caruncles (Wooding, 1984). Munson et al. (1996) suggest that the parallel growth of heterologous epithelial cells during epitheliochorial placentation may be regulated, in part, through unique responses to growth factors.

In the endometrium of pregnant ewes, expression of TGF-β1, -β2 and -β3 was lowest on day 16 (Doré et al., 1996a), a time of rapid trophoblast growth and the production of trophoblast interferon τ (IFN-τ), which has been shown to diminish endometrial TGF-β expression (Godkin et al., 1997). Expression of transcripts for TGF-β1 and -β2 increased markedly at day 23, coincident with the termination of IFN-τ production, and remained high through to day 30. This is the period of initial placental formation when cotyledons develop on the fetal placenta in areas in contact with maternal caruncles which undergo structural modifications allowing chorionic villi to interdigitate with, but not invade, maternal epithelium and form the crypts of the mature placenta. TGF-β3s are likely candidates to play a role in several of the cellular events in this process (Doré et al., 1996a).

The critical importance of TGF-β in embryonic development has been demonstrated in mice with a disrupted TGF-β1 gene (Schull et al., 1992). Embryos homozygous or heterozygous for the disrupted allele suffer significant embryonic mortality characterized by defects in extra-embryonic tissues, primarily the yolk sac vasculature and haematopoietic system (Dickson et al., 1995). TGF-β1 null fetuses that survive appear as phenotypically normal pups at birth but develop multifocal inflammatory disease resulting in wasting and death (Schull et al., 1992). The prenatal survival of TGF-β1 null mice has been attributed, in part, to maternal TGF-β1 which has been shown to cross the placenta and enter the fetus (Letterio et al., 1994). A remarkable accomplishment was the survival of a single TGF-β1 null female, rescued from the wasting syndrome by dexamethasone treatment, which gave birth to four live, albeit abnormal, TGF-β1 null pups and three pups heterozygous for the disrupted allele (Letterio et al., 1994). Animal models such as this provide extraordinary opportunities for investigating and identifying the role of TGF-β in reproductive processes, fetomaternal interactions and embryonic development.

The authors wish to thank the USDA NRCCGP, The Texas Agricultural Experimentation Station and College of Veterinary Medicine Centers of Excellence Program for support and Teresa Herring for typing the manuscript.

References

Key references are identified by asterisks.

*Chegini N, Zhao Y, Williams RS and Flanders K (1994a) Human uterine tissue throughout the menstrual cycle expresses transforming growth factor-β1 (TGF-β1), TGF-β2, TGF-β3, and TGF-β type II receptor messenger ribonucleic acid and protein and contains [125I]TGF-β-binding sites Endocrinology 135 439–449

Chegini N, Gold LI, Williams RS (1994b) Localization of transforming growth factor beta isoforms TGF-β1, TGF-β2, and TGF-β3 in surgically-induced endometriosis in the rat Obstetrics and Gynecology 83 450

Das SK, Flanders KC, Andrews GK and Dey SK (1992) Expression transforming growth factor-β isoforms (β2 and β3) in the mouse uterus: analysis of the peri-implantation period and effects of ovarian steroids Endocrinology 130 459–466

Dickson MC, Martin JS, Counsins FM and Dulkarnia AB (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-β knockout mice Development 121 1845–1854

Doré JJE, Wilkinson JE and Godkin JD (1996a) Ovine endometrial expression of transforming growth factor-β isoforms during the peri-implantation period Biology of Reproduction 54 1080–1087

Doré JJE, Eberhardt DM, Jacobs WG and Godkin JD (1996b) Regulation of ovine endometrium transforming growth factor-βs by steroids American Journal of Reproductive Immunology 35 453–461

Graham CH (1997) Effect of transforming growth factor-β on the plasminogen activator system in cultured first trimester human cytotrophoblasts Placenta 18 137–143

Lea RG, Flanders KC Harley CB, Manuel J, Banwatt D and Clark DA (1992) Release of a transforming growth factor (TGF-β)-related suppressor factor from postimplantation murine decidua tissue can be correlated with the detection of a subpopulation of cells containing RNA for TGF-β2 Journal of Immunology 148 778–787

Morrish DW, Bhardwaj D and Paras MT (1991) Transforming growth factor-β inhibits placental differentiation and human chorionic and human placental lactogen secretion Endocrinology 122 22–26

Schatz F and Lockwood CJ (1993) Progestin regulation of plasminogen activator inhibitor type 1 in primary cultures of endometrial stromal and decidual cells Journal of Clinical Endocrinology and Metabolism 77 621–625

