Host and viral factors influencing heterosexual HIV transmission

Christopher J. Miller

Virology and Immunology Unit, California Regional Primate Research Center and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA

The World Health Organization estimates that 28–30 million people have been infected with human immunodeficiency virus (HIV) worldwide, according to World Health Organization estimates. Most of these people were infected through heterosexual contact and this is particularly true in the urban centres of sub-Saharan Africa and Asia (Johnson, 1988; Piot et al., 1988). Despite its importance, the biology of this mode of transmission is not fully understood. Many HIV-infected individuals who became infected by heterosexual contact may be unaware of their infection status. Because the mean incubation period from seroconversion to AIDS is about 8–10 years (Bacchetti and Moss, 1989), these individuals have the potential, through sexual contact, to disseminate HIV widely before they become aware that they are infectious. Thus, AIDS has the potential to become a far more serious global epidemic than is currently the case. It is likely that development of a vaccine capable of preventing heterosexual HIV transmission will be facilitated by a more complete understanding of the biology of heterosexual HIV transmission. Significant progress has been made in recent years, and much of this progress has been made by using the simian immunodeficiency virus (SIV)/rhesus monkey model of heterosexual HIV transmission (Miller et al., 1989, 1990, 1994a; Miller, 1994; Lu et al., 1996). Both HIV and SIV are retroviruses of the lentivirus family. They have a high degree of nucleotide sequence similarity and organization of viral genes is similar. We have shown that vaginal inoculation of SIV in rhesus macaques results in systemic infection.

The reproductive physiology, including a 28 day menstrual cycle, of rhesus macaques is remarkably similar to that of humans (Hendricks and Cukierski, 1987). Furthermore, the gross and histological anatomy of the genital tract of women and female rhesus macaques is very similar. In both species, the mucosa of the vagina is composed of a nonkeratinized, stratified squamous epithelium and an underlying highly vascularized lamina propria. The ectocervix has a similar architecture, and the endocervix (which is not normally exposed to material in the vaginal lumen) is composed of a simple columnar epithelium covering a highly vascularized lamina propria. Membranous cells (M cells) have not been demonstrated in the vagina or cervix; the intraepithelial antigen-presenting cell is the Langerhans cell. Langerhans cells are specialized members of the dendritic cell family that reside in stratified squamous epithelia of the body. In mice, antigen absorption in the vagina occurs via CD4+ Langerhans cells (Parr and Parr, 1990). Langerhans cells are MHC II+ and CD4+ dendritic cells located within the ectocervical and vaginal squamous epithelium of humans (Edwards and Morris, 1985). These cells are also abundant in the vagina of the rhesus macaque and extend dendritic processes to the lumen of the vagina (Miller et al., 1992a,b). Langerhans cells are common in the skin, where they have been shown, upon antigen stimulation, to migrate to the draining lymph node. In the draining lymph node, Langerhans cells transform into the interdigitating dendritic cells (IDCs) of the T cell-rich paracortex. Interdigitating dendritic cells present antigen to T helper cells in the paracortex, which in turn stimulate antigen-specific B cells. A resident population of monocyte-macrophages and T cells and B cells is present in the lamina propria of the vagina. These cells are specifically localized in the superficial lamina propria, just beneath the vaginal epithelium. Of particular significance is the presence of large numbers of CD8+ T cells within the epithelium and superficial submucosa of the vagina and cervix in both rhesus macaques and humans (Edwards and Morris, 1985; Roncalli et al., 1988; Miller et al., 1992a). Other investigators have demonstrated the presence of plasma cells, predominantly IgA-secreting, in the human cervix. The identical cellular components of the human and rhesus macaque lower female reproductive tract suggest that the biology of the closely related SIV and HIV viruses is
likely to be very similar in their respective species. Thus, the rhesus macaque is an excellent animal model in which to study the biology of heterosexual HIV transmission and try to develop immunization strategies to prevent heterosexual transmission of HIV.

For development of vaccines, it is particularly urgent that several questions regarding the biology of sexual transmission of HIV be addressed. The relative importance of cell-associated and cell free virus in heterosexual transmission of HIV must be determined. The effect of endogenous and exogenous steroids on the reproductive tract and how this affects transmission of HIV needs to be understood. The extent to which specific viral variants are transmitted selectively by heterosexual intercourse, the target cells for viral transmission in the reproductive tract, and the route the virus takes to leave the reproductive tract and disseminate to the systemic lymphoid tissue need to be defined. In addition, an understanding of how this route of dissemination affects the kinetics of virus replication may have a significant impact on vaccine design.

Host factors influencing transmission

In the USA, HIV appears to be transmitted more efficiently from men to women than from women to men (Padian et al., 1987, 1991). Several cofactors have been identified that increase the risk of an individual acquiring HIV through heterosexual contact. Cervical ectopy, receptive anal intercourse, genital ulcer disease and infection with other sexually transmitted diseases are the most significant factors associated with HIV infection of women (Holmes and Kreiss, 1988; Holmberg et al., 1987, 1991). Several cofactors have been identified that increase the risk of an individual acquiring HIV through heterosexual contact. Cervical ectopy, receptive anal intercourse, genital ulcer disease and infection with other sexually transmitted diseases are the most significant factors associated with HIV infection of women (Holmes and Kreiss, 1988; Holmberg et al., 1987, 1991),(Padian et al., 1987, 1991), while the presence of an intact foreskin and genital ulcer disease of the penis are the risk factors most often associated with HIV infection in men (Simonsen et al., 1988; Cameron et al., 1989).

It is estimated that for a single sexual contact, the infectivity of HIV is 0.3% (Padian et al., 1987; Hearst and Hulley, 1988; Peterman et al., 1988; Lawrence et al., 1990). However, some individuals become infected after a single or a few sexual contacts (Staskewski et al., 1987; Peterman et al., 1988), while others remain uninfected despite hundreds of contacts (Lawrence et al., 1990). There are three possible explanations for the variability in the sexual transmission of HIV. First, unique factors in the HIV-infected individual (stage of disease, immune response, presence of other sexually transmitted diseases) may influence infectivity. Second, unique factors in specific HIV strains may influence infectiousness. Some HIV strains may be inherently more likely than other strains to be shed in the secretions of infected persons or some strains may, by virtue of their cellular tropism or some other phenotypic characteristic, have an increased affinity for target cells in the reproductive tract. Third, unique factors (stage of menstrual cycle, nutritional status or the presence or absence of the risk factors listed above) may influence the susceptibility of individuals to HIV infection after exposure. One factor that may be associated with an increased risk of infection in women is the use of oral or injectable contraceptives (Plummer et al., 1991; Daly et al., 1994; Flourd and Plummer, 1994). A recent study in the SIV/rhesus monkey model of sexual transmission of HIV demonstrated that treatment of macaques with high doses of exogenous progesterone increases their susceptibility to infection after vaginal inoculation of SIV (Marx et al., 1996). However, similar effects have not been seen in women using progestin contraceptives (Duer et al., 1997). Some individuals may be highly susceptible to HIV infection, while others may be more resistant. In fact, several recent reports suggest that inherent resistance to infection is associated with the absence of a co-receptor for HIV on the cells of these individuals (Dean et al., 1996; Liu et al., 1996).

Biology of the reproductive tract

HIV and SIV infect CD4+ cells of the immune system, including CD4+ T lymphocytes, macrophages and dendritic cells. There have been several reports that HIV and SIV can infect epithelial cells in vitro, but this has never been demonstrated convincingly in vivo. Thus, the presumption must be that the CD4+ cells in the reproductive tract are the target cells for HIV transmission. Understanding the biology of these viruses in any local anatomic site requires an understanding of the distribution and function of these cell types at the site. Significant progress has been made recently in characterizing the components of the genital immune system in males and females and several reviews have been published recently. This work is briefly summarized below.

Distribution of immune cells in the female reproductive tract

The vagina consists of a nonkeratinized, stratified squamous epithelium resting on an indistinct lamina propria and an underlying vascular submucosa (Fig. 1). The ectocervix has a similar architecture, while the endocervix consists of a simple columnar epithelium covering a vascular submucosa. The mucosal immune system in the genital tract of the female rhesus macaque consists of a resident population of monocyte–macrophages and T cells in the lamina propria of the vagina and cervix (Miller et al., 1992a; Fig. 1). CD8+ T cells are especially abundant in these tissues and are specifically localized in the deep layers of the vaginal epithelium or in the lamina propria, just beneath the vaginal epithelium. A similar population of lymphocytes and macrophages has been described in the submucosa of the human cervix, where they have been called mucosal associated lymphoreticular tissue (MALT; Edwards and Morris, 1985). MHC class II+, CD4+ dendritic Langerhans cells are abundant in the vaginal and ectocervical mucosa of women (Hackemman et al., 1968; Younes et al., 1968; Bjercke et al., 1983; Morris et al., 1983; Edwards and Morris, 1985) and rhesus macaques (Miller et al., 1992a) and dendritic processes from Langerhans cells can extend to the lumen of the vagina, presumably to sample antigens. In mice, absorption of soluble antigen from the lumen of the vagina occurs via Langerhans cells (Parr et al., 1991).

Distribution of immune cells in the male reproductive tract

Pudney and Anderson (1993) provide an excellent description of the organization of immune cells in the male reproductive tract, which is briefly summarized below. There are numerous macrophages but no lymphocytes in the interstitium of the testis and no white blood cells are found in the seminiferous tubules of normal men. However, a variety of pathological conditions can result in greater numbers of T cells
within the testicles. In normal testicles from healthy men, CD8+ T cells are located in the columnar epithelium of the rete testis and CD4+ T cells are found in the connective tissue around the rete testis. T lymphocytes also occur in the epididymis, seminal vesicles and prostate of normal men and CD4+ T cells are found in human epididymal epithelium. In addition to T cells, numerous macrophages are present in the interstitium of the excurrent ducts and accessory glands. The penile urethra also contains a complete compliment of immune cells. Numerous CD4+ and CD8+ lymphocytes, dendritic cells and macrophages are present in the lamina propria and submucosa of the penile urethra (J. Pudney and D. Anderson, personal communication). In addition, numerous Langerhans cells are located in the foreskin of rhesus macaques (Miller et al., 1994b) and men (C. Miller, unpublished).

HIV/SIV target cells in the genital tract

The identity and location of the cellular targets of HIV/SIV during genital transmission remain to be determined. However, significant progress has been made recently. Simple application of SIV onto the intact genital mucosa of mature and immature rhesus macaques results in virus transmission, and the disease induced by this route of inoculation is indistinguishable from that seen in animals inoculated intravenously (Miller et al., 1989, 1990). SIV is transmitted efficiently to hysterectomized female macaques by inoculation of cell-free virus into blind vaginal pouches (Miller et al., 1992c). Since there are no CD4+ T cells in the vaginal epithelium and only a few CD4+ T cells are present in the submucosa of the vagina (Miller et al., 1992a), the most likely target cells in the vaginal mucosa are...
macrophages or Langerhans cells (Miller et al., 1992a,b). In chronically infected female rhesus macaques, SIV-infected cells are present in the uterus, cervix and vagina (Miller et al., 1992b). The majority of the SIV-infected cells are located in the submucosa of the ectocervix and vagina and have a morphology consistent with T lymphocytes and monocyte-macrophages. Occasionally, SIV-infected cells are also found within the stratified squamous epithelium of the vagina. Some of the infected cells in this location have a dendritic morphology consistent with Langerhans cells (Miller et al., 1992b). Using triple-label techniques, we have recently shown that CD1a+, p55+ Langerhans cells in the vaginal epithelial contain mRNA encoding SIV (J. Hu and C. Miller, unpublished). This is the first unequivocal demonstration that Langerhans cells in the vaginal mucosa are infected with SIV. Langerhans cells of the skin can be infected with HIV in AIDS patients (Tscharuchler et al., 1987; Zambruno et al., 1991). The finding that cells in the vaginal epithelium are infected with SIV is the first indication that mucosal Langerhans cells might be infected with a lentivirus (Miller et al., 1992b). In cervical biopsy material obtained from HIV-infected women, T cells and macrophages were determined to be the cell types infected with HIV (Pomerantz et al., 1988; Nuovo et al., 1993). These findings are consistent with the results in SIV-infected monkeys. All the cells that were found to be infected in the genital tract of both humans and rhesus monkeys presumably express the CD4 molecule. There is no evidence that nonCD4+ cell types (epithelial cells) are infected in the reproductive tracts of either monkeys or humans.

The transmission of HIV/SIV to males may involve similar types of target cell. Studies to detect the location of HIV-infected cells in the penis of infected men are lacking, but the fact that CD4+ Langerhans cells are located in the foreskin and the epidemiological evidence indicating that the presence of an intact foreskin is associated with an increased risk of HIV infection suggests that Langerhans cells in the foreskin may be target cells during genital transmission. In SIV-infected rhesus macaques, these Langerhans cells in the foreskin contain SIV nucleic acid (Miller et al., 1994b). In addition, adult male rhesus macaques can be infected with SIV by placing cell-free virus onto the foreskin of the animals (Miller et al., 1990).

These findings suggest that Langerhans cells have a role as target cells in the sexual transmission of HIV and SIV. These antigen-presenting cells are potentially efficient disseminators of virus from the genital mucosa to draining lymph nodes. These cells function to transport antigen from the stratified squamous epithelium to the draining lymph node (Shelley and Juhlin, 1976; Silberger-Sinakin et al., 1976; Shelley and Juhlin, 1977; Hoefsmit et al., 1982; Kraal et al., 1986; Kupiec-Weglinski et al., 1988; Kripke et al., 1990; Steinman, 1991). Blood dendritic cells (of which Langerhans cell precursors are a subset) can be infected with HIV (Patterson and Knight, 1987; Macatonia et al., 1990; Langhoff et al., 1991; Patterson et al., 1991). Furthermore, when infected in vitro, these cells produce much higher concentrations of virus than do T cells, but they do not exhibit the usual cytopathic effects associated with HIV infection (Langhoff et al., 1991). In addition, dendritic cell–T cell conjugates produce especially high concentrations of HIV in vitro (Pope et al., 1995). Thus, Langerhans cells in the male and female genital tract (Hackemann et al., 1968; Younes et al., 1968; Bjercke et al., 1983; Morris et al., 1983; Edwards and Morris, 1985) may be particularly well suited as target cells for the sexual transmission of HIV and SIV (Miller et al., 1992b,c). On the basis of these observations, we have proposed a model to explain the cellular events in the genital transmission of HIV and SIV (Miller et al., 1992c,d; Fig. 2).

It has been suggested that trauma to tissues during intercourse may be necessary for heterosexual transmission of HIV and that virus can gain direct access to the bloodstream through these wounds; however, this is very unlikely. The haemodynamic pressures in the peripheral vasculature do not permit the movement of particles (cells or viruses) from tissues directly into blood vessels. Blood cells (including CD4+ T cells) that escape from the peripheral vasculature do not re-enter the bloodstream but travel through lymphatics to reach the draining lymph nodes. This is the same pathway that vaginal macrophages and Langerhans cells would take after infection with HIV (Fig. 2; Miller et al., 1992c). It is reasonable to assume that trauma would increase the number of viruses that cross the mucosa and that the haemorrhage associated with the trauma would increase the number of CD4+ target cells in the submucosa of the vagina. The increased number of virions and target cells might increase the efficiency of HIV transmission but probably would not affect the route of virus dissemination from the genital tract to systemic lymphoid tissue (Miller et al., 1992c). In heterosexual HIV transmission, the initial virus–host cell interaction occurs in the genital mucosa or submucosa and the early events in the dissemination of HIV occur in the draining lymph node.

Viral factors in sexual transmission of HIV

Heterosexual transmission of cell-free or cell-associated HIV

It is of interest to know which form of HIV, cell-free virions or virus infected cells, is more important for sexual transmission of HIV. Both cell-associated and cell-free HIV are present in genital secretions and it is not clear if one or both forms of virus are involved in sexual transmission (for review see Alexander, 1990). Cell-free and cell-associated HIV and SIV can be isolated from cervico–vaginal secretions at any stage of the menstrual cycle (Vogt et al., 1986, 1987; Wolsky et al., 1986; Miller et al., 1990). HIV is present in semen in both cell-free and cell-associated form and can be isolated from asymptomatic individuals and AIDS patients (Zagury et al., 1984; Anderson et al., 1990, 1992; Kreiger et al., 1991). Studies using PCR have produced widely divergent results on the prevalence of HIV nucleic acid in semen. In one study, the HIV genome was detected in the nonspermatozoal mononuclear cells in 74% (17/23) and in the seminal fluid of 65% (15/23) of the semen samples tested (Mermin et al., 1991). In another study, HIV DNA was detected in nonspermatozoal mononuclear cells in 1 of 25 semen samples tested (VanVoorhis et al., 1991). HIV can be isolated from the ejaculate of vasectomized seropositive men (Anderson et al., 1991). Cell-free and cell-associated SIV can be isolated from the semen of infected rhesus macaques (Miller et al., 1989). SIV can be isolated from the semen of intravaginally inoculated animals before seroconversion, and the virus is present in both cell-free and cell-associated form (C. J. Miller, unpublished). We have recently shown that rhesus macaques inoculated intravaginally with up to 10⁴ SIV-infected...
peripheral blood mononuclear cells do not become infected with SIV, while intravenous inoculation with as few as ten SIV-infected cells produces systemic infection (Miller, 1994). These experiments are being repeated but, based on these preliminary studies, it seems that cell-free virus is more likely to be responsible for transmission during sexual contact.

Preferential heterosexual transmission of viral variants

If ‘selection’ for specific HIV variants by sexual intercourse occurs, vaccines should be designed to prevent transmission of these specific viruses. HIV-1 variants can be defined in at least two ways: viruses that differ on the basis of nucleotide sequence are genotypic variants, whereas viruses that differ on the basis of biological behaviour are phenotypic variants. A few studies have been undertaken in humans recently infected with HIV-1. Most of these studies have concluded that, based on envelope sequence, there is selection for a limited number of genotypes in acute HIV infection (Wolinsky et al., 1992; Zhang et al., 1993; Zhu et al., 1993). However, this restriction on genotype does not extend to other regions of the viral genome (Zhang et al., 1993; Zhu et al., 1993; Albert et al., 1994). It is also not clear that this restriction on the viral genotype in acute infection is related to the route of HIV transmission.

For the purposes of this discussion, vaginal transmission of SIV is defined as the ability to detect virus in peripheral blood

Fig. 2. A model of HIV heterosexual transmission and subsequent virus dissemination. Cell-free HIV infects CD4+ antigen-presenting cells in the epithelium (Langerhans cells) or in the lamina propria (macrophages or dendritic cells) of the vaginal mucosa. These HIV-infected antigen-presenting cells migrate to the iliac and obturator lymph nodes which drain the genital tract. In rhesus macaques, India ink injected into the vagina localizes in these lymph nodes within 72 h (C. J. Miller, unpublished). The infected antigen-presenting cells interact with CD4+ T cells in the paracortex of the lymph node, spreading the virus infection. Once the virus is replicating in T cells, it is passed by cell–cell contact and as cell-free virions to infect numerous cells (CD4+ T cells, interdigitating dendritic cells, macrophages) in the lymph node. Infected CD4+ T cells and virions move through the efferent lymphatics up the para-aortic lymph node chain, disseminating the infection. Eventually, HIV-infected CD4+ T cells and virions reach the bloodstream and disseminate the infection to distant lymphoid tissues. There appears to be a fundamental difference in the kinetics of virus replication between animals inoculated intravenously and animals inoculated intravaginally with a very pathogenic SIV/HIV (SHIV) chimaeric virus (C. J. Miller, unpublished). In the animals inoculated intravenously, the peak of antigenemia occurred 7 days after inoculation. In contrast, in animals that became infected by intravaginal inoculation of the pathogenic SHIV 89.6-PD, peak antigenemia occurred 14 days after inoculation. This 1 week delay in viral replication and dissemination is consistent with the model of stepwise dissemination of HIV from the mucosal surface to the draining lymph nodes and, subsequently, to the bloodstream. (Modified from Miller et al., 1992c.)
mononuclear cells, by virus isolation or PCR, after vaginal inoculation. This definition does not rule out the possibility that a virus can cross the mucosa but cannot disseminate systemically. SHIVHXBc2 and SHIV 89.6 are SHIV/HIV chimaeras between SIVmac239 and HIV-1 molecular clones (Li et al., 1992; Lu et al., 1996; Reimann et al., 1996a). Both SIV/HIV chimaeric (SHIV) viruses reliably produce infection in macaques inoculated intravaginally (Reimann et al., 1996a). We have reported (Lu et al., 1996) that four intravaginal inoculations of SHIVHXBc2 fail to produce a systemic infection in rhesus macaques. In contrast, as few as three intravaginal inoculations of SHIV89.6 consistently result in viraemia in rhesus macaques (Lu et al., 1996). One experiment in this study demonstrated that, after intravaginally inoculating animals with a mixed inoculum containing both viruses, only the SHIV89.6 genome could be detected in the peripheral blood mononuclear cells of the animals. The only difference in the genotype of these two viruses is that the gp120 and gp41 coding regions are derived from different parental HIV-1 clones. This is clear evidence that, in the SHIV/rhesus macaque system, the coding sequence of envelope influences the ability of a virus to produce systemic infection after intravaginal inoculation. In addition, we have systemically infected rhesus macaques with a single intravaginal application of SHIV89.6-PD. SHIV89.6-PD is a pathogenic variant of SHIV89.6 that was derived from the plasma of a rhesus macaque that developed AIDS after intravenous inoculation with blood from another rhesus macaque infected with SHIV89.6 (Reimann et al., 1996b). The genetic changes that distinguish SHIV89.6-PD from the parental SHIV 89.6 have not been defined, but are the subject of intense investigation.

A second study involved the use of three molecular clones of SIV to assess transmission of viral variants during vaginal inoculation: SIVmac239, SIVmac 1A11 and a chimaeric virus that consisted of the regions encoding the gp41 and LTRs of SIVmac 239 in the background of SIVmac1A11 (SIVmac1A11/239). Intravenous inoculation of all three of these viruses reliably produces infection in rhesus macaques (Marthas et al., 1993). However, animals inoculated intravaginally with SIVmac239 and SIVmac1A11/239 reliably became infected after a single intravaginal inoculation, while animals inoculated intravaginally with SIVmac1A11 become infected only rarely. The only difference in the genotype of SIVmac1A11 and SIVmac1A11/239 is that the gp41 and LTRs of the latter virus are derived from SIVmac239 (Marthas et al., 1993). Thus, the nucleotide sequences of gp41 or LTR, or both, can influence the ability of a virus to produce systemic infection after intravaginal inoculation.

We have shown that not all the SIV or SHIV virus genotypes that produce systemic infection by intravenous inoculation are capable of producing systemic infection by intravaginal inoculation. These results clearly demonstrate that the genotypic determinants that permit SIV or SHIV to produce systemic infection differ depending on the route of virus inoculation. However, the phenotypic characteristics that may be common to the genotypes that produce systemic infection after vaginal inoculation remain undefined. A summary of the in vitro phenotypes of the viruses used in this study is provided (Table 1). As can be seen, the ability of a virus to grow in rhesus macaque monocyte-derived macrophages in vitro does not predict the outcome of intravaginal inoculation. SIVmac1A11 and SHIVHXBc2 replicate efficiently in rhesus macaque macrophages but do not transmit vaginally, while SIVmac239 and SHIV89.6 do not replicate in macrophages but do transmit vaginally.

Because all of the viruses used in this study systemically infect animals after intravenous inoculation, we next sought to determine whether viruses that transmit vaginally share a common in vivo replication phenotype in animals inoculated intravaginally. We assessed two parameters: (1) ability of a virus to produce plasma antigenaemia (viral antigens in blood) or plasma viral RNA concentrations; and (2) the cell-associated virus load in animals infected with a particular virus. A summary of this analysis is presented (Table 1). These in vivo studies demonstrate that viruses that produce a plasma antigenaemia after intravenous inoculation are uniformly capable of producing systemic infection after intravaginal inoculation. Not shown is the data that demonstrated that relative concentrations of viral RNA in plasma after intravenous inoculation paralleled the results of the plasma antigenaemia analysis. Thus, animals inoculated intravaginally with SHIV 89.6, SHIV 89.6-PD, SIVmac239 and SIVmac1A11/239 have detectable

Table 1. Relationship of simian immunodeficiency virus (SIV) and SHIV phenotype to vaginal transmission in rhesus macaques

<table>
<thead>
<tr>
<th>Virus isolate/clone</th>
<th>Replication in T-cell lines</th>
<th>Replication in macrophages</th>
<th>Replication kinetics</th>
<th>Plasma antigenaemia after i.v. inoculation</th>
<th>PBMC load after i.v. inoculation</th>
<th>Vaginal transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIVmac251b</td>
<td>+</td>
<td>+</td>
<td>Rapid</td>
<td>+</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>SHIV89.6PD</td>
<td>+</td>
<td>+</td>
<td>Intermediate</td>
<td>+</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>SIVmac1A11/239</td>
<td>+</td>
<td>+</td>
<td>Delayed</td>
<td>+</td>
<td>Intermediate</td>
<td>Yes</td>
</tr>
<tr>
<td>SIV89.6</td>
<td>+</td>
<td>–</td>
<td>Delayed</td>
<td>+</td>
<td>Intermediate</td>
<td>Yes</td>
</tr>
<tr>
<td>SIVmac239</td>
<td>+</td>
<td>–</td>
<td>Delayed</td>
<td>+</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>SIVmac1A11</td>
<td>+</td>
<td>+</td>
<td>Rapid</td>
<td>–</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>SHIVHXBc2</td>
<td>+</td>
<td>+</td>
<td>Intermediate</td>
<td>–</td>
<td>Intermediate</td>
<td>No</td>
</tr>
</tbody>
</table>

Data generated by characterizing the virologic parameters in rhesus macaques that were infected with each virus clone or isolate by intravenous (i.v.) inoculation.

Virus stocks derived from uncloned viral isolates. All other virus stocks were derived from viral clones.

PBMC, peripheral blood mononuclear cells.
plasma antigen and relatively high plasma concentrations of viral RNA, whereas animals inoculated intravenously with SHIVHXB2 and SIVmac1A11 do not have a plasma antigenemia and have relatively low plasma viral RNA concentrations. The data on plasma antigenemia in animals inoculated intravenously with SHIVHXB2 and SHIV 89.6 were published by Reimann et al. (1996a). Thus, the in vivo replicative capacities of the SHIV and SIV clones or isolates used in these studies predict the ability of each virus to produce systemic infection after intravaginal inoculation.

The findings in the SHIV and SIV studies summarized here are the first clear demonstration that there is selection, or exclusion, of specific genotypes during vaginal transmission. Previous studies demonstrated that a limited number of genotypes, as characterized by the nucleotide sequence in specific regions of the envelope gene, are found in humans infected recently with HIV-1. In one study, it was shown that two individuals, infected by heterosexual contact, had viral variants with a gp120 sequence that was found in only a minor fraction of the proviral population in the blood of the transmitter (Zhu et al., 1993). A more recent study characterized viral variants in a single transmitter–recipient heterosexual pair and concluded that, while the envelope V3 loop sequences in the major variant of the donor and recipient were similar, the sequence of the envelope V1-V2 region sequences in the recipient were found only in a minor variant of the donor (Zhu et al., 1996). The authors speculate that this was because these variants had a selective advantage at penetrating the mucosal barrier during sexual contact. A study involving a relatively large number of acute seroconverters found that, when the nucleotide sequence of viruses in each individual were compared, there was little sequence heterogeneity in two normally hypervariable regions of the env gene (Zhang et al., 1993). However, this result was not limited to individuals who had been infected by sexual contact but was also found in individuals infected parentally (Zhang et al., 1993). This finding does not support the hypothesis that viruses with certain envelope nucleotide sequences are transmitted by sexual contact because they can penetrate the vaginal mucosa more efficiently, but rather supports the idea that only a limited number of the viral genetic variants in a donor have the fitness to initiate an infection in a naive recipient, regardless of the route of transmission. In these studies, the sequence homogeneity of the envelope did not extend to the gag gene (Zhang et al., 1993; Zhu et al., 1993). Thus, the acute seroconverters were apparently infected with multiple virus variants that were homogeneous in envelope nucleotide sequence but heterogeneous in gag nucleotide sequence.

With regard to preferential sexual transmission of viruses with a particular phenotype, numerous studies have demonstrated that individuals acutely infected with HIV-1 have a viral variant that can grow in primary macrophages in vitro but not in T cell lines and does not cause syncitia in MT-2 cells. This is the macrophage tropic–nonsyncytium-inducing (NSI) phenotype. It has been widely presumed that these viral variants with a macrophage-tropic–NSI viral phenotype are selectively transmitted by sexual contact. This notion has been championed to explain the finding of limited genetic heterogeneity of HIV envelope in individuals infected by sexual contact. Thus, a virus with an envelope sequence that allows it to replicate in macrophages would be more likely to be transmitted by sexual contact because the virus could infect the most likely target cells in the genital mucosa. However, as with envelope nucleotide homogeneity, this apparent restriction of viral phenotype in acutely infected people occurs regardless of the route of transmission. One study of a relatively large number of acute seroconverters infected by sexual contact found that the virus that was transmitted to the donor had the same phenotype as the major viral variant in the donor (Fiore et al., 1994). In this study, all the HIV-1 isolates from 21 individuals with primary HIV-1 infection replicated in monocyte-derived macrophage cultures. Seven of these isolates also replicated in T-cell lines and were, thus, dual tropic. In addition, studies on ten pairs of individuals consisting of the index case and seroconverting sexual partner showed that, when the viral phenotypes in the two individuals forming a transmission pair were compared, the phenotype of the HIV-1 was the same in both individuals in nine of the ten transmission pairs. Furthermore, both of the individuals in five of the pairs were infected with an syncitium-inducing (SI) variant. Thus, this study found that there was no selection for macrophage-tropic–NSI viruses during sexual transmission (Fiore et al., 1994). These authors point out that there are a number of case reports and smaller studies in which index cases with T cell-tropic–SI variants infected a sexual partner (Yoshiyama et al., 1987; Clark et al., 1991; Roos et al., 1992; Nielsen et al., 1993; Zhu et al., 1993). In approximately half of these transmission events, the seroconverting partner became infected with a T cell-tropic–SI variant. When all the published data is reviewed, it seems clear that there is no restriction on the sexual transmission of HIV-1 variants that can replicate in T-cell lines, but not macrophages, in vitro. The results of the SIV and SHIV in vivo studies described here support this conclusion. However, we have not determined whether in vivo tropism in dendritic cells is associated with increased vaginal transmission of SIV or SHIV. This may be an important omission. Soto-Ramirez et al. (1996) have shown that only some HIV-1 variants can replicate efficiently in Langerhans cells in vitro, and that these strains of HIV-1 are associated epidemiologically with outbreaks of sexually transmitted HIV. This finding also provides indirect support for the hypothesis that Langerhans cells are the initial target cell for HIV infection in the genital tract (Fig. 2).

We have now demonstrated experimentally that only some viral (SIV or SHIV) genotypes can produce a systemic infection after vaginal inoculation. This supports the conclusion that there is selection for viral genotypes during sexual transmission of HIV. However, the common phenotype, if any, of the selected genotypes is not apparent from in vitro studies of viral phenotype. We did find that all the viruses capable of transmission by vaginal inoculation had a common in vivo phenotype. After intravenous inoculation of rhesus macaques, all the transmitting viruses produced plasma antigenemia and high concentrations of plasma viral RNA. In contrast, although the nontransmitting viruses infect rhesus macaques after intravenous inoculation, the infection that occurs after intravenous inoculation is characterized by a lack of viral antigen in plasma and the low concentrations of plasma viral RNA. On the basis of these results, it is likely that viruses that are adapted to replicate to high concentrations in vivo are capable of being transmitted by vaginal inoculation. This principle is probably applicable to the heterosexual transmission of HIV in humans.
Conclusions

Although brief and incomplete, this overview does highlight the fact that much has been learned regarding the biology of heterosexual HIV transmission. Although many questions remain, unifying themes have emerged from studies conducted by a number of different approaches. On the basis of experimental findings in the SIV/rhesus macaque model, it seems likely that much of HIV sexual transmission is mediated by cell-free virus, and that dendritic cells or macrophages in the vaginal mucosa are the likely target cells for HIV transmission. Although there is restriction in the genotypes of viruses transmitted through sexual contact, the common phenotypic characteristic of these viruses does not appear to be related to in vitro measures of tropism but rather to the relatively high replicative fitness of the transmitted viral variants in vivo. It is clear that host factors, such as the expression of HIV-1 co-receptor on host cells, the use of exogenous progesterone and the presence of ulcerative sexually transmitted diseases may affect the susceptibility of an individual to HIV infection.

The author thanks Michael McChesney for critical comments. The work cited from the author’s laboratory was supported by NIH grants AI35545, HD 33169, RR00169 and by the Contraceptive Research and Development Program (CONRAD), Eastern Virginia Medical School, under a Cooperative Agreement with the United States Agency for International Development (USAID) (DPE-3044-A-00-6063-00) with funds by USAID and National Institute of Child Health and Human Development (NICHD) through an interagency agreement on AIDS research. The views expressed do not necessarily reflect the views of NICHD, USAID or CONRAD.

References

Key references are indicated by asterisks.

*Alexander NJ (1990) Sexual transmission of human immunodeficiency virus: virus entry into the male and female genital tract Fertility and Sterility 54 1–18

Daly CC, Helling-Giese GE, Mati JK and Hunter DJ (1994) Contraceptive methods and the transmission of HIV: implications for family planning Genitourinary Medicine 70 110–117

Holmberg SD, Horsburgh CRJ, Ward JW and Jaffe HW (1989) Biologic factors in the sexual transmission of human immunodeficiency virus journal of Infectious Disease 160 116–125

Kriple ML, Munn CG, Jeevan A, Tang JM and Bucana C (1990) Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact sensitization Journal of Immunology 145 2833–2837

Langhoff EF, Terwilliger EF, Bos HJ, Kalland KH, Pozansky MC, Bacon OML and Haseltine WA (1991) Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures Proceedings of the National Academy of Sciences USA 88 7998–8002

Li J, Lord CI, Haselwine W, Letvin NL and Sodroski J (1992) Infection of cynomolgous monkeys with a chimeric HIV-1/SIVmac virus expressing the HIV-1 envelope glycoproteins Journal of Acquired Immune Deficiency Syndrome 5 639–646

Miller CJ, McChesney M and Moore PF (1992a) Langerhans cells, macrophages and lymphocyte subsets in the cervix and vagina of rhesus macaques Laboratory Investigation 67 628–634

Miller CJ, Vogel P, Alexander NJ, Dandekar S, Hendrickx AG and Marx PA (1994b) Pathology and localization of SIV in the reproductive tract of chronically infected male rhesus macaques Laboratory Investigation 70 255–262

Padian N, Marquis L, Francis DP, Anderson RE, Rutherford GW, Padian NS, Shiboski SC and Jewell NP (1991) Female to male transmission of human immunodeficiency virus type 1 Immunology 72 361–367

Roos MT, Lange JM, de GR, Coutinho RA, Schellekens PT, Miedema F and Tersmette M (1992) Viral phenotype and immune response in primary human immunodeficiency virus type 1 infection Journal of Infectious Disease 165 427–432

Shelley W and Juhlin L (1976) Langerhans cells form a reticuloepithelial trap for external contact allergens Nature 261 46–47

Shelley W and Juhlin L (1977) Selective uptake of contact allergens by the Langerhans cells Archives of Dermatology 113 187–192

Silberberg-Sinakin I, Thorbecke GJ, Baer RL, Rosenthal SA and Berezovsky V (1976) Antigen-bearing Langerhans cells in skin, dermal lymphatics and in lymph nodes Cellular Immunology 25 137–151

