Control of the immunological environment of the uterus

Sarah A. Robertson

Department of Obstetrics and Gynaecology and The Reproductive Medicine Unit, University of Adelaide, Adelaide SA 5005, Australia

The uterine immune axis holds the key to solving major problems in female reproductive health, including infertility, many pathologies of pregnancy, and sexually transmitted disease. The molecular determinants of tolerance and immunity in the reproductive tract are now being identified, and the governing principles are similar to those in other mucosal tissues. Cytokines are implicated as pivotal regulators at important ‘decision-making’ points in each phase of the induction and elicitation of a response. Indeed, the flexibility to deal appropriately with antigens as disparate as infectious micro-organisms, spermatozoa and the conceptus is likely to be attributable to the sophistication of the cytokine network in driving immune deviation. A better understanding of the factors controlling the development of immune activity in the uterus, particularly the significance of the inductive cytokine environment in determining the destiny of T-lymphocyte responses, will assist the rational design of new therapeutic strategies to treat immune-based reproductive disorders.

The uterus is uniquely adapted to support pregnancy while retaining the barrier function that is characteristic of all mucosal tissues. The capacity to distinguish between, and appropriately respond to, the array of foreign entities to which it is exposed is achieved through a highly specialized local immune system. Specific mechanisms acting to elicit immunological tolerance in the case of semen and the conceptus co-exist with active immunity to defend the uterus from pathogenic bacteria and viruses. Since populations of regulatory and effector T lymphocytes are likely to be the key orchestrators of any endometrial or decidual immune activity or tolerance, it is essential that the molecular events involved in their selective activation and expansion are deciphered. Studies in other mucosal tissues show that the character and strength of a T-lymphocyte response is the net consequence of pivotal ‘decision-making’ points in the inductive (afferent) and effector (efferent) pathways. This overview will highlight the significance of T lymphocytes in uterine immune responses and the nature of the major determinants of their generation, with a focus on the integral role of cytokines (Box 1) in these processes. Finally, the prospects for exploiting this knowledge to intervene therapeutically in immune responses to uterine pathogens or the conceptus will be discussed.

Immunological competence of the uterus

The uterus is part of the common mucosal immune system, sharing structural and functional similarities, and common lymphocyte trafficking networks, with the intestinal, bronchial, nasal-associated and ocular tissues, and salivary and mammary glands. The uterus is supplied with ample lymphatic drainage and contains the full range of lymphohaemopoietic cells and molecular regulators required to generate and elicit ‘adaptive’ (antigen-specific) immunity. The most striking difference between the uterus and other mucosal surfaces is the lack of highly organized secondary lymphoid nodules analogous to Peyer’s patches and bronchus-associated lymphoid tissue (BALT). This deficiency may be related to the smaller antigenic load encountered in the uterus. In the absence of infectious disease, antigen exposure is confined to the intermittent introduction of semen or conceptus tissue, and micro-organisms ascending from the vagina or introduced at insemination.

Antibody-mediated (humoral) and cell-mediated immunity can be induced in the uterus after infection, or immunization by antigen delivery to the reproductive tract or other mucosal surfaces (for reviews, see Parr and Parr, 1994; Wira et al., 1999). Although there have been few systematic efforts to define the variables that determine the magnitude or quality of the uterine response to exogenous antigens, it is clear that the nature of the antigen, the route of sensitization and the use of adjuvants all have a major influence. The uterus is exceptional among mucosal tissues in that ovarian steroid hormones also have considerable effects on both afferent and efferent immune events (for review, see Wira et al., 1999). Thus, the outcome of an immune response and the elicitation of protective immunity to pathogens can be markedly influenced by the stage of the oestrous cycle at which priming or infection takes place (Kaushic et al., 1998; Parr and Parr, 1999).

‘Immune deviation’ and the significance of T lymphocytes

The quality and effectiveness of an adaptive immune response is contingent on the relative abundance and activities of alternative phenotypes of T lymphocytes (Box 2) recruited into the site of the antigenic insult. Different subsets of T lymphocytes elicit the full spectrum of immune responses, ranging from antibody-mediated or cell-mediated types of immunity, to various forms of anergy or active suppression. This capacity for ‘deviation’ in the immune response is now recognized to underlie most forms of immunological tolerance, as well as protective immunity, in mucosal tissues and is, therefore, implicated as the underlying mechanism for flexibility in uterine immune activity.
Box 1. Cytokine regulation of the uterine immune response

The cells of the immune system are often loosely distributed and nomadic, in continual flux through the blood and peripheral tissues. The immune system relies on the presence of a highly sophisticated communication network mediated by cytokines and other soluble messenger molecules to raise a rapid, integrated response to an antigenic stimulus. Cytokines are small, usually glycosylated proteins expressed and secreted in a highly regulated fashion, with the flexibility to act locally or at a distance, to limit their sphere of influence or act at a systemic level, and to exert transient or sustained effects. The special characteristics of cytokines and cytokine receptors, including the molecular basis of their complex patterns of diverse and overlapping actions, have been reviewed by Kelso (1998).

The cytokine network operating in the female reproductive tract is governed predominantly by ovarian steroid hormones, and it is through the agency of cytokines that reproductive hormones exert their powerful influence on local immune activity (Robertson et al., 1994). During the oestrous cycle and pregnancy, fluctuating concentrations of ovarian steroid hormones have a marked effect on the pattern of cytokines emanating from endometrial somatic cells, particularly luminal and glandular epithelial cells. Further modulation of the cytokine axis occurs in response to immunization (Robertson et al., 1992; Choudhuri and Wood, 1993; Tremellen et al., 1998), the presence of a conceptus (McMaster et al., 1993; Cocchiara et al., 1996) or the introduction of foreign agents or infection (Rasmussen et al., 1997). Additional factors, including genetic polymorphisms in cytokine genes, developmental events, nutrition and stress, contribute to quantitative differences in the magnitude and profile of the cytokine response among and within individuals (Table 1).

Table 1. Factors regulating cytokine synthesis in the uterus

<table>
<thead>
<tr>
<th>Factors regulating cytokine synthesis in the uterus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovarian steroid hormones</td>
</tr>
<tr>
<td>Cytokines, soluble cytokine receptors and antagonists</td>
</tr>
<tr>
<td>Infection and bacterial or viral products</td>
</tr>
<tr>
<td>Prostaglandins and other soluble mediators</td>
</tr>
<tr>
<td>Extracellular matrix molecules</td>
</tr>
<tr>
<td>Stress hormones</td>
</tr>
<tr>
<td>Nutrition</td>
</tr>
<tr>
<td>Genetics (cytokine gene polymorphisms)</td>
</tr>
<tr>
<td>Developmental events</td>
</tr>
</tbody>
</table>

Box 2. T-lymphocyte subsets

T lymphocytes can be categorized into subsets on the basis of their cytokine secretion patterns and functional capabilities (Table 2). The best characterized T lymphocytes were originally labelled Th1 (for T helper type 1) and Th2, but the preferred terminology is now type 1 and type 2, since both CD4+ (helper) and CD8+ (suppressor-cytotoxic) T cells can display these patterns. Type 1 T cells participate in cell-mediated immune responses, such as delayed type hypersensitivity and macrophage activation, whereas type 2 subsets stimulate a humoral response by releasing cytokines that induce B lymphocytes to proliferate, differentiate and secrete antigen-reactive antibodies (Mosmann and Sad, 1996).

Other prominent cytokine patterns have been identified in CD4+ cells, including cells designated T helper type 3 (Th3) cells, which are characterized by copious secretion of TGFβ (Weiner, 1997) and T-regulatory 1 (Tr1) cells which exhibit high interleukin 10 secretion (Groux and Powrie, 1999). Both Th3 and Tr1 cell types have potent suppressive activity and are likely to be key mediators of mucosal tolerance, acting principally by inhibiting type 1 responses. The regulatory influences of Th3 and Tr1 cells are not confined to a single antigen but instead inhibit inflammation in a general manner within the microenvironment of the sensitizing antigen, a phenomenon called ‘bystander suppression’ (Groux and Powrie, 1999). In mice, special subsets of T cells expressing natural killer cell markers (NK1+ T cells) also suppress type 1 immunity through their unique ability to secrete interleukin 4 (Bendelac et al., 1997).

T-lymphocyte populations in the endometrium and cervix

T lymphocytes, defined on the basis of their expression of surface CD3 and T-cell receptor (TCR) molecules, comprise a significant lymphocyte population in the cyclic and pregnant endometrium of all species so far investigated. They are generally fewer in number than the distinctive, antigen non-endometrium of all species so far investigated. They are generated from precursors (T lymphoblasts, T lymphocytes) in the bone marrow and undergo clonal selection in the thymus. T lymphocytes can be categorized into subsets on the basis of their cytokine secretion patterns and functional capabilities (Table 2). The best characterized T lymphocytes were originally labelled Th1 (for T helper type 1) and Th2, but the preferred terminology is now type 1 and type 2, since both CD4+ (helper) and CD8+ (suppressor-cytotoxic) T cells can display these patterns. Type 1 T cells participate in cell-mediated immune responses, such as delayed type hypersensitivity and macrophage activation, whereas type 2 subsets stimulate a humoral response by releasing cytokines that induce B lymphocytes to proliferate, differentiate and secrete antigen-reactive antibodies (Mosmann and Sad, 1996).

Other prominent cytokine patterns have been identified in CD4+ cells, including cells designated T helper type 3 (Th3) cells, which are characterized by copious secretion of TGFβ (Weiner, 1997) and T-regulatory 1 (Tr1) cells which exhibit high interleukin 10 secretion (Groux and Powrie, 1999). Both Th3 and Tr1 cell types have potent suppressive activity and are likely to be key mediators of mucosal tolerance, acting principally by inhibiting type 1 responses. The regulatory influences of Th3 and Tr1 cells are not confined to a single antigen but instead inhibit inflammation in a general manner within the microenvironment of the sensitizing antigen, a phenomenon called ‘bystander suppression’ (Groux and Powrie, 1999). In mice, special subsets of T cells expressing natural killer cell markers (NK1+ T cells) also suppress type 1 immunity through their unique ability to secrete interleukin 4 (Bendelac et al., 1997).

In humans, it is generally agreed that most endometrial T cells express the CD4+CD8- form and fewer cells express the CD8+ form of the TCR (Vassiliadou and Bulmer, 1996). Most endometrial T cells also express CD8 and are located in intra-epithelial locations, or scattered singly or in aggregates adjacent to glands in the endometrial stromal tissue (Morris et al., 1985; Vassiliadou and Bulmer, 1996). During early pregnancy, the abundance of T lymphocytes decreases but CD3+ cells still account for 10-20% of the lymphocytes in the decidua, and there remains some debate over the relative proportions of cells expressing CD4+ and CD8+ TCRs (Mincheva Nilsson et al., 1994; Vassiliadou and Bulmer, 1996). The precise phenotypes and specific cytokine expression profiles of decidual T cells have begun to be explored, and considerable heterogeneity is evident (Christmas and Meager, 1990; Jokhi et al., 1994). Their antigenic specificities also remain unknown, but the majority of those expressing CD8+ TCRs incorporate the V81 gene segment and potentially recognize a wide array of self and/or trophoblast antigens (Christmas et al., 1993; Mincheva Nilsson et al., 1997).
Table 2. Alternative CD4+ T-lymphocyte phenotypes and their distinguishing characteristics

<table>
<thead>
<tr>
<th></th>
<th>Th1</th>
<th>Th2</th>
<th>Th3</th>
<th>Tr1</th>
<th>NK1 + T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inducing cytokines</td>
<td>IL-12, IFNγ</td>
<td>IL-4, IL-10</td>
<td>IL-4, IL-10</td>
<td>IL-10</td>
<td></td>
</tr>
<tr>
<td>Inducing factors</td>
<td>dsDNA, dsRNA, LPS</td>
<td>TGFβ, PGE</td>
<td>TGFβ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliciting APC</td>
<td>type 1 DC</td>
<td>type 2 DC</td>
<td>DC</td>
<td>DC</td>
<td>DC/epithelial cell</td>
</tr>
<tr>
<td>Eliciting MHC</td>
<td>MHC class II</td>
<td>MHC class II</td>
<td>MHC class II</td>
<td>MHC class II</td>
<td>CD1</td>
</tr>
<tr>
<td>Major cytokine secreted</td>
<td>IFNγ, IL-2</td>
<td>IL-4, IL-5</td>
<td>TGFβ</td>
<td>IL-10, TGFβ</td>
<td>IL-4</td>
</tr>
<tr>
<td>Regulatory phenotype</td>
<td>Help Cell-mediated IR</td>
<td>IgG1/IgE</td>
<td>IgA</td>
<td>IgG1/IgE</td>
<td>IgG1/IgE</td>
</tr>
<tr>
<td></td>
<td>Suppress</td>
<td>Th2</td>
<td>Th1</td>
<td>Th1/Th2</td>
<td>Th1/Th2</td>
</tr>
<tr>
<td>Antigen specificity</td>
<td>Activation</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Function</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Bystander suppression</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Th: T-helper; NK: natural killer; IL: interleukin; IFN: interferon; TGF: transforming growth factor; PGE: prostaglandin E; LPS: lipopolysaccharide; APC: antigen presenting cell; DC: dendritic cell; MHC: major histocompatibility complex; Ig: immunoglobulin; IR: immune response.

T lymphocytes are sparse in the uteri of non-pregnant mice (Croy et al., 1993), although repeated exposure to semen and multiple parity may increase the number of resident T cells as exposure to antigen increases. Pregnancy is associated with a substantial increase in the numbers of αβ and γδ TCR+ T cells, which comprise up to 20% of the total lymphocytes in midgestation decidua (Heyborne et al., 1992; Arck et al., 1997). Vδ1+ cells, which as in humans predominate among murine decidual γδ T cells, appear to recognize and respond to mouse and human trophoblast antigens in a non-major histocompatibility antigen (MHC) restricted manner, potentially through specificity for heat shock protein (HSP)-60 (Heyborne et al., 1994). Specificity for paternal MHC class I antigens is detected among CD8+ T cells in lymph nodes draining the uterus, and evidence of downregulated TCR expression indicates functional unresponsiveness in these cells (Tafuri et al., 1995; Zhou and Mellor 1998). Although some individual γδ decidual clones display a ‘type 1’ phenotype (see Box 2), on the basis of their expression of cytokines including interleukin 2 (IL-2) and tumour necrosis factor α (TNFα) (Heyborne et al., 1992), other T cells can be categorized as ‘type 2’ or ‘Th3’ on the basis of their expression of transforming growth factor β (TGFβ) of either the β1 or β2 isoform. These TGFβ cells can suppress alloantigen-induced lymphocyte proliferation in vivo in a non-antigen-specific manner (Suzuki et al., 1995; Clark et al., 1997).

Infection, as well as pregnancy, can affect the populations of T cells found in the uterus. The absolute numbers and relative proportions of lymphocytes, particularly CD4+ T cells, are increased in the reproductive tracts of pathogen-infected mice or women who have sexually transmitted disease (Kaushic et al., 1998; Levine et al., 1998): the precise numbers and phenotypes are probably dependent on the nature of the pathogen and the stage of progression of the disease.

A more comprehensive picture of the exact nature of the T cells residing in the endometrium and decidua will only emerge after a detailed characterization of their surface antigen- and cytokine-secreting profiles is achieved, preferably using multi-parameter analysis of individual cells by flow cytometry or reverse transcriptase (RT)–PCR. However, it is reasonable to conclude on the basis of current knowledge that decidual T cells bear similarities to subsets of regulatory and effector T lymphocytes found in other mucosal tissues, in terms of both their surface antigen expression and their cytokine secretion profile (Table 2). In particular, the identification of populations of cells secreting TGFβ supports the proposition that a form of ‘bystander suppression’ mediated by Th3-like cells operates in the decidua during pregnancy. The presence in the uterus of populations analogous to the Tr1 or NK-T subsets, which are implicated in tolerance in other mucosae (Box 2), remains to be explored.

T-lymphocyte perturbations in pathologies of pregnancy

The functional significance of T lymphocytes in the uterine immune response is most clearly demonstrated by their associations with pathologies of pregnancy. An excess of type 1 activity in the implantation site is emerging as a key feature of disorders of pregnancy believed to have an immunological aetiology, including spontaneous abortion and pre-eclampsia (Raghupathy, 1997). The detrimental effect of type 1 immunity is exerted on the growth and development of the placenta, through eliciting inflammatory and pro-thrombotic cascades that interfere with blood supply (Clark et al., 1998). In mice, studies in the abortion-prone CBA × DBA strain combination have established causal relationships between specific subsets of decidual T cells and pregnancy outcome. Cell depletion experiments in vivo indicate that CD8+ αβ T cells are absolutely necessary for immunological tolerance of the conceptus, and identify γδ T cells with a type 1 cytokine secretion profile as predisposing to pregnancy loss (Arck et al., 1997). The fact
that pregnancy can proceed in T-cell-deficient scid/scid mice indicates that the relative balance between these apparently beneficial and detrimental cell subsets is likely to be of paramount importance, rather than any trophic effect of T cells on placental development.

Although a similar cause and effect relationship is difficult to demonstrate in humans, there is now convincing evidence that an aberration in decidual T-lymphocyte phenotypes is associated with abortion in women. Expression of type 2 cytokines leukaemia inhibitory factor (LIF), IL-4 and IL-10 is diminished in both CD4⁺ and CD8⁺ decidual T-cell clones recovered from women who have experienced recurrent pregnancy loss (Piccinni et al., 1998). This type 1 cytokine bias is reflected systemically in trophoblast antigen-reactive peripheral blood lymphocytes (Hill et al., 1995).

Kinetics of T-lymphocyte generation

The relative proportions of alternative phenotypes of T lymphocytes comprising an antigen-specific pool is the net result of a stepwise process that begins with activation of naïve lymphocytes by antigen presenting cells, continues with their differentiation and clonal expansion, and concludes with their recruitment back into the site of antigen entry (Fig. 1). There are many opportunities for cytokines to influence the development of different subsets at each stage of the processes of recognition and response to antigen.

The inductive phase – priming for tolerance versus immunity

Antigen uptake and processing

The first event in the induction of a new immune response is the uptake of antigen by endocytosis or phagocytosis into antigen-presenting cells (APCs) at the site of antigen encounter. Internalized antigen is degraded within the endolysosomal pathway into small immunogenic fragments, which are then presented on the cell surface in association with MHC molecules, in readiness for interaction with cognate T lymphocytes.
In the endometrium and cervix, the predominant cells implicated in antigen uptake and processing are MHC class II+ dendritic cells and macrophages. These cells form a contiguous network immediately subjacent to the epithelial surface in rodents (Head and Gaede, 1986) and in women, in whom they are especially concentrated at the transformation zone in the cervix (Edwards and Morris, 1985; Morris et al., 1985; Tabibzadeh et al., 1986).

There are substantial differences in the abundance and location of APCs within tissues, particularly macrophages, during both the oestrous cycle and pregnancy, which are the consequence of fluctuations in the expression of the cytokines and chemokines driving their recruitment into various tissue compartments (Jones et al., 1997; Wood et al., 1997). At some stages of the reproductive process, for example after insemination in mice, macrophages with an activated phenotype colocalize with dendritic cells in the endometrial and cervical tissues (McMaster et al., 1992; Robertson et al., 1996a). However, because of the paucity of markers for distinguishing accurately between these cells, their precise abundance, locations and ontogenic relationship have yet to be fully characterized. In addition, the roles of non-professional uterine APCs, such as luminal and glandular epithelial cells, which can express MHC class II constitutively and in response to infection (Kausch et al., 1998), as well as the non-classical MHC class I-b molecule CD1, remain to be explored (Canchis et al., 1993).

Although soluble proteins instilled into the uterine lumen can be endocytosed into epithelial cells, passage across the epithelium into stromal APCs does not occur readily (Parr and Parr, 1994), and immune responses are difficult to elicit with soluble proteins administered into the uterine lumen in the absence of adjuvants (for review, see Parr and Parr, 1994). The access of APCs to luminal antigens may be facilitated by trauma to the epithelial surface, for example, in the event of infection or endometrial sloughing, and this explains why invasive micro-organisms such as Chlamydia elicit stronger responses than protein antigens (Stagg et al., 1998). Constitutive dendritic cell phagocytosis of apoptotic epithelial cells has been documented in intestinal tissues (MacPherson and Liu, 1999), demonstrating that the phenomenon of ‘cross-priming’, where by dendritic cells can prime CD8+ cells after acquisition of antigen from apoptotic cells, may be a common mechanism facilitating transport of luminal antigens into stromal APCs in mucosal tissues. In addition, there is clear evidence of uptake of sperm antigens into phagocytes in the uterine stroma after insemination in mice (Watson et al., 1983), indicating that factors in semen elicit increased epithelial permeability to luminal antigens, or that spermatozoa have special adhesive properties facilitating their uptake into endometrial tissue.

During human pregnancy, cells expressing MHC class II molecules are abundant in decidual tissues recovered during the first trimester and also at term (Bulmer et al., 1988) but, in mice, they are sequestered away from the decidual–placental interface from early after implantation, and are relegated to the metrial gland and mesometrial tissue (Redline and Lu, 1989). Even in this more remote location, APCs may acquire antigens released in soluble form or as the consequence of the apoptosis of trophoblasts. It is possible that trophoblasts present antigens to decidual lymphocytes, in the context of their non-polymorphic class I-b molecules, a notion supported by the finding that human leukocyte antigen G (HLA-G) presents peptide (Diehl et al., 1996).

Dendritic cell activation and emigration

Effective T-cell priming to antigens encountered in the uterus by conventional APCs would require that, once loaded with antigen, the APCs emigrate from the endometrial tissues to draining lymph nodes via the afferent lymphatics. By analogy with events described in other mucosae, this emigration would be accompanied by a phenotypic and functional maturation characterized by increased expression of molecules required for effective antigen presentation, including MHC class II and co-stimulatory molecules (Banchereau and Steinman, 1998; Sallusto and Lanzavecchia, 1999).

Several cytokines known to influence APC maturation and function are expressed by somatic cells and leukocytes in endometrial tissues under the regulation of ovarian steroid hormones (for review, see Robertson et al., 1994). Granulocyte macrophage colony-stimulating factor (GM-CSF) and tumour necrosis factor α (TNFα), the key cytokines implicated in the maturation of sentinel dendritic cells, are expressed in uterine epithelial cells and mast cells after induction by oestrogen (Hunt et al., 1997a). In contrast, cytokines that inhibit these events, such as CSF-1 and IL-10, and other products of local leukocytes, including nitric oxide (Bilyk and Holt, 1995), are induced by progesterone in the secretory phase of the human cycle and during early pregnancy in mice (Daiter and Pollard, 1992; Hunt et al., 1997a). Progesterone induces a decrease in GM-CSF expression (Robertson et al., 1996b), an effect that might be augmented by the destabilizing effects of IL-10 on mRNA encoding GM-CSF (Brown et al., 1996). Taken together, these observations indicate a major role for steroid hormones in driving the inductive phase of the immune response through differential effects on cytokine-regulated antigen uptake and processing (Fig. 2). This proposal may account for the well-recognized immunosuppressive effects of progesterone, and is supported by functional data from experiments showing that steroid hormones regulate the immunostimulatory activity of rat uterine cell preparations in vitro (Wira, 1999).

The predisposing effects of oestrogen on antigen uptake and processing may be augmented by exposure to semen (Fig. 2). In mice, there is a further upregulation in expression of GM-CSF, IL-1 and TNFα after insemination (McMaster et al., 1992; Robertson et al., 1992) and the effects of these cytokines could be boosted by seminal TGFβ (Tremellen et al., 1998), which counteracts the inhibitory effects of macrophages (Bilyk and Holt, 1995). Changes in the abundance and activation phenotypes of rodent uterine macrophages and dendritic cells that are consistent with an effect of insemination on antigen processing activity have been reported by De et al. (1991) and Robertson et al. (1996a). Whether a similar influence of insemination is exerted in the cervical tissues of women is not known. Furthermore, specific chemokines that direct the movements of dendritic cells by differentially targeting immature and activated cells have now been described, and exploration of their occurrence and temporal expression in the uterus would be illuminating (Sallusto and Lanzavecchia, 1999).
Antigen presentation and lymphocyte activation – general principles

Once recruited into lymph nodes, APCs induce the activation, proliferation and differentiation of antigen-reactive T lymphocytes. The factors that drive the selective differentiation of alternative subsets include: (1) the cytokine environment, (2) the nature of the antigen, (3) the dose of antigen, and (4) the presence or absence of a repertoire of soluble and membrane-bound ‘co-stimulatory’ signals delivered by the APC to the T lymphocyte (Seder and Paul, 1994; Constant and Bottomly, 1997). The most clearly defined variable is the nature of the cytokine environment in which the APC-antigen encounter takes place (Table 2). Thus, local conditions within the site of antigen encounter are thought to polarize the capacity of dendritic cells to trigger alternative subsets of effector and regulatory T cells (Steptoe and Thomson, 1996; Kapsenberg et al., 1999). IL-12 and, to a lesser extent, interferon γ (IFNγ), IFNα and IL-18 appear to be the most important cytokines for promoting type 1 differentiation, whereas IL-4 has the greatest influence in driving type 2 differentiation (Table 2). The induction of Th3 cells is augmented by IL-4, IL-10, bacterial lipopolysaccharide (LPS), and IFNβ (Weiner, 1997), whereas Tr1 cells arise when antigen is delivered in the presence of IL-10 (Groux and Powrie, 1999). The APC lineage also has a potent influence on the character of the ensuing response, with epithelial cells and haemopoietic APCs expressing CD1 appearing to trigger the activation of NK1+ T cells (Bendelac et al., 1997) and regulatory cells with suppressive functions (Mayer, 1997) preferentially.

Fig. 2. Effect of ovarian steroid hormones and insemination on the expression of cytokines and the behaviour of antigen-presenting cells in the mouse endometrium. The cytokine environment at the time of insemination is conducive to induction of new immune responses. Transforming growth factor β (TGFβ) contained in seminal plasma induces expression of granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 6 (IL-6) and chemokines in uterine epithelial cells, which elicit the recruitment and activation of macrophages and dendritic cells in the endometrial stroma. Expression of IL-1 and tumour necrosis factor α (TNFα) in macrophages would augment the effects of GM-CSF in driving the maturation of sentinel dendritic cells (DC) and their emigration to draining lymph nodes. In the absence of ‘danger’ signals, this cytokine environment would be expected to elicit T lymphocytes with type 2 and T-helper type 3 phenotypes. Conversely, the cytokine environment at the time of implantation is not conducive to the induction of immune responses. Progesterone-induced synthesis of CSF-1, IL-10 and nitric oxide in uterine epithelial cells and leukocytes would be expected to constrain DC activity in the implantation site. In other mucosal tissues, these cytokines act directly and indirectly through the agency of macrophages to inhibit DC transition from the sentinel to the mature state. NK: natural killer cell.
Antigen presentation and lymphocyte activation in the endometrium and cervix

In the uterus, the influence of the oestrous cycle and the intermittent presence of semen and conceptus tissue cause considerable fluctuations in the concentrations of cytokines that affect APC–T cell interactions. Probably the greatest and most frequent antigenic challenge to the female reproductive tract occurs at insemination when, at least in mice, there is clear evidence for resultant T-cell priming (Beer and Billingham, 1974). The character of the ensuing response is likely to be profoundly influenced by the considerable immune-deviating activity of seminal plasma. TGFβ, present in seminal plasma at concentrations of 100–200 ng ml⁻¹ (Nocera and Chu, 1993; Tremellen et al., 1998), is a highly potent immune-deviating agent and key tolerance-inducing molecule in the ocular, intestinal and respiratory mucosae (Letterio and Roberts, 1998). In humans, the activity of seminal TGFβ is augmented by prostaglandin E₂ (PGE₂) (Kelly et al., 1997), which acts to programme a type 2-inducing phenotype in dendritic cells through its capacity to inhibit IL-12 synthesis (Kapsenberg et al., 1999). A ‘tolerance-inducing’ effect of seminal plasma was indicated by the finding that seminal plasma abrogates the priming for delayed type hypersensitivity achieved by intrauterine instillation of spermatozoa in rats (Beer and Billingham, 1974). In addition, human seminal plasma has been shown to skew the phenotype of lymphocytes induced to proliferate in vitro (Kelly et al., 1997). Functional evidence for a type 1 inhibiting effect is provided by the finding that peripheral tolerance to paternal transplantation antigens can be induced in mice by mating with intact but not seminal vesicle-deficient males (S. A. Robertson, K. Branson and R. F. Seamark, unpublished). Diminished type 1 immunity when antigen is delivered in the context of seminal plasma may also account for the marked attenuation by semen of simian immunodeficiency virus infectivity in macaques (Neilddez et al., 1998).

The effects of seminal cytokines are augmented by TGFβ and PGE₂ secreted from endocervical and endometrial cells in women (Fichorova and Anderson, 1999) and endometrial epithelial cells in rodents (Tamada et al., 1990). Additional type 2- and Th3-deviating cytokines, including IL-4, IL-6 and IL-10, are secreted in the endometrium in women (Lim et al., 1998) and are likely to ensure that tolerance is the default outcome to challenge with luminal antigens. Although type 1-deviating cytokines, including IL-12, IL-2 and IFNγ, are rarely detected in non-pregnant endometrial tissue (Lim et al., 1998), the uterus and endocervical tissues have the capacity to override this default situation and mount a type 1 immune response when confronted with ‘danger signals’ identifying the threat of infection (Stagg et al., 1998; Rasmussen et al., 1997). One such signal is IFNγ, which can evoke macrophage expression of the type 1-skewing cytokine IL-12. In immortalized endometrial and cervical epithelial cells, IFNγ is a potent inducer of cytokine and chemokine expression, and also of MHC class II antigens (Tabibzadeh et al., 1986; Fichorova and Anderson, 1999). Intracellular lymphocytes and, unexpectedly, neutrophils are capable of producing IFNγ in endometrial tissue (Yeaman et al., 1998), but a correlation between expression of these cytokines and local expansion of type 1 T lymphocytes has yet to be demonstrated.

Cytokines with the capacity to skew immune responses through influencing the differentiation and expansion of specific lymphocyte populations are abundant in the implantation site. Copious quantities of IL-4, IL-10 and PGE₂, secreted by placental trophoblast and amnion epithelial cells (Jones et al., 1995; Kelly et al., 1995; Roth et al., 1996), as well as IL-4 and TGFβ secreted by uterine NK cells and decidual T lymphocytes (Jokhi et al., 1994; Clark et al., 1997; Whitelaw and Croy 1996), ensure that any local APCs are continuously bathed in type 2- and Th3-deviating cytokines. The effects of these cytokines are bolstered by the type 2-deviating effects of progesterone-induced blocking factor (PIBF), a 34 kDa protein released by lymphocytes in response to progesterone (Szekeres Bartho and Wegmann, 1996). In contrast, TNFα and IFNγ would be expected to counteract the type 2-polarizing cytokines and, indeed, aberrant secretion of TNFα and IFNγ by decidual macrophages and activated NK cells is associated with fetal resorption in mice (Clark et al., 1998). Human decidual neutrophils and macrophages can also express IFNγ and IL-12, for example after stimulation with LPS (Haddad et al., 1997; Yeaman et al., 1998).

Thus, there is a molecular framework for achieving immune deviation by influencing the inductive phase of the immune response during pregnancy. However, considerable experimental work is now required to demonstrate causal links between expression of immune-deviating cytokines, the existence of specific phenotypes in decidual APCs, and the activation and expansion of T-lymphocyte populations with regulatory or effector functions that can influence the outcome of pregnancy.

The effector phase – achieving acceptance versus rejection

The effector phase of the immune response involves recruitment of T lymphocytes from the circulation back into the site of antigen encounter, further rounds of proliferation and differentiation within that site, and the exertion of effector functions. Each of these processes is susceptible to molecular regulation that affects the final outcome.

T-lymphocyte recruitment into the reproductive tract

Specific patterns of recruitment or homing are likely to contribute to the specificity in T-lymphocyte phenotypes present in the cyclic and pregnant uterus. All lymphocytes are programmed during their development to follow specific migration pathways through the body that enable antigen-specific immune responses to be concentrated at certain sites. Directed migration, or ‘homing’, into mucosal tissues is controlled by expression of distinct patterns of adhesion molecules on the lymphocyte cell surface, which mediate differential recognition and adherence to endothelium in mucosal sites.

Cell-tracking experiments show that cells primed in the nasal-associated lymphoid tissue (NALT) home preferentially to the reproductive tract, indicating that similar molecules might control lymphocyte homing to both sites. However, any regional specificity is not absolute, since priming of rectal tissue and, to a lesser extent, the upper intestinal tract, can also elicit cells that migrate into the urogenital tissues (Parr and Farr, 1994). Little is known about the molecular regulation
of T-lymphocyte homing into endometrial tissues, but there is evidence of temporal patterns of adhesion molecule expression in endometrial endothelial cells that could regulate access of lymphocytes both spatially and temporally (Rees et al., 1993). Local microdomains are also evident within the implantation site, with differential expression of adhesion molecules among local vessels (Burrows et al., 1994). One example of this is mucosal vascular addressin (MAdCAM-1), which unexpectedly has been found in a proportion of vessels at the leading edge of trophoblast invasion in women, despite being otherwise absent from the reproductive tract (Kruse et al., 1999). It would be of great interest to investigate whether differential expression in the endometrium and decidua of specific chemokines relates to the preferential recruitment of type 1 and type 2 T-lymphocyte populations in different situations (Sallusto et al., 1998).

Lymphocyte differentiation, survival and effector function in situ

Once recruited into local tissues, the retention and further proliferation of antigen-specific lymphocytes is driven by the presence of local antigen, leading to further expansion of reactive T-cell clones. Like naïve T-cell priming, this expansion is dependent on the interaction between T cells and resident APCs and is equally susceptible to the prevailing cytokine environment. Although dendritic cells are essential for stimulating naive T cells during the first encounter with antigen, activated macrophages and B cells can stimulate experienced, activated T cells and mucosal addressin allows them to enter the mucosal immune system (Yeaman et al., 1997; Vassiliadou and Bulmer, 1998). The increase in size of these aggregates at ovulation and during the secretory phase, and their absence in post-menopausal women, indicates regulation by steroid hormone-driven cytokines.

Discovery of expression of the recombinase activating enzymes (RAG-1 and RAG-2) in the implantation site in mice has led to speculation that the decidua comprise a site for extra-thymic T-cell differentiation during early pregnancy (Kimura et al., 1995). RAG-1 and RAG-2 expression has also been reported within decidual aggregates of CD3+ T lymphocytes during the first trimester of human pregnancy (Hayakawa et al., 1994; Mincheva Nilsson et al., 1997). Hayakawa et al. (1994) and Mincheva Nilsson et al. (1997) have claimed that RAG-1 and RAG-2 expression is also evident in decidual CD56+ cells, but this claim has been disputed by King et al. (1998). The ontogenic relationship between cells classified as uterine NK cells and mucosal T lymphocytes remains unclear, especially now that components of the CD3 complex, a defining marker of T lymphocytes, have been found in the cytoplasm of decidual CD56+ cells (Hayakawa et al., 1994; King et al., 1998).

Even after terminal differentiation, the behaviour of T lymphocytes can be influenced in situ depending on local cytokine activity. For example, it has been shown that IFNγ release and anti-trophoblast cytotoxic activity in uterine NK cells can both be augmented by culture in IL-2 and IL-12 (Marzusch et al., 1997; Hayakawa et al., 1999). The differential survival of T lymphocytes in the uterus is likely to be constrained by specific apoptotic lysis of certain subsets. This mechanism appears to be particularly important in pregnancy, during which fas ligand-expressing decidual and trophoblast cells are ideally positioned to delete fas+lymphocytes (Hunt et al., 1997b).

Exploiting cytokines to manipulate the uterine immune response

Each ‘decision-making’ step in the induction and elicitation of the uterine immune response is open to exogenous intervention. The cytokines that drive the generation of immune responses are obvious tools and targets for strategies designed to stimulate or inhibit aspects of a new immune response, or even to redirect existing responses (Kelso, 1998).

Immunization against conception and sexually transmitted pathogens

The host defence mechanisms operating to control sexually transmitted infections, including human immunodeficiency virus, human papilloma virus, HSV-2 and Chlamydia, are being elucidated, and key antigens and specific types of protective immunity have been identified (Parr and Parr, 1999). The challenge now is to construct vaccines that effectively elicit and sustain the desired type of immunity, in the appropriate tissue. Similarly, contraceptive vaccines involving immunization against reproductive antigens to confer protection against conception or embryo implantation have enormous potential for the humane control of pest animal species, and perhaps also in human fertility regulation. Prophylactic and contraceptive vaccines of the future will almost certainly use cytokines as adjuvants to deviate the immune response in the desired manner (Ramsay and Ramshaw, 1997). Various strategies for the incorporation of cytokines in vaccines, either as soluble proteins, naked DNA or in replicating vectors, are being explored. A further consideration will be the route of administration, with the established link between the nasal and genital tissues indicating that aerosol administration to the airways might prove an efficacious and practical alternative to reproductive tract delivery.

Immunotherapy for pathologies of pregnancy?

A second, and potentially major, application of emerging knowledge will be in the development of therapeutic treatments to treat infertility and other immunological disorders including recurrent abortion and pre-eclampsia. The underlying lesion in many of these disorders is likely to be imbalance in the phenotypes of regulatory lymphocytes present in decidual tissues, specifically a deficiency in those subsets that suppress the formation of type 1 activity (Raghupathy, 1997). This imbalance may reflect disturbances in some or all of the stages of the generation of the immune response to conceptus antigens, but current paradigms identify the cytokine environment during the initial stages of the response, particularly at antigen presentation, as most critical.

Exogenous manipulation of the activities of cytokines has been used to considerable effect in improving pregnancy outcome in mouse models (Chaouat et al., 1990, 1995) and, at face
value, seems an attractive proposition in women. Theoretically, type 1 cytokines such as TNFα could be neutralized by systemic administration of specific antibodies, soluble cytokine receptors, or natural or synthetic cytokine antagonists. Administration of a cytokine that counteracts the effect of TNFα (for example, IL-10) might achieve a comparable effect. The problem with these approaches is the potential for toxic side-effects in tissues unrelated to the target site. Innovative strategies for overcoming this impediment include targeted delivery systems, or virally encoded or naked cytokine DNA to achieve sustained cytokine exposure at selected sites (Kelso, 1998). An alternative approach is cell therapy to exploit the phenomenon of by-virally encoded or naked cytokine DNA to achieve sustained these approaches is the potential for toxic side-effects in tissues IL-10) might achieve a comparable effect. The problem with grants from the NH and MRC of Australia.

Conclusions and perspectives

The picture emerging from the studies highlighted in this review is of a uterine immune environment featuring a series of molecular mechanisms to ensure that tolerance is the default response to foreign entities that breach the epithelial barrier. This tolerance appears to be achieved principally through the agency of cytokine environments that either drive the induction of type 2 or Th3 T-lymphocyte responses (for example, at semi-nation), or interfere with the induction of new responses by inhibiting the activation and emigration of antigen-presenting cells (for example, during pregnancy). The elicitation of type 1 immunity seems to require antigen exposure in the context of specific cytokines or other signalling agents of bacterial or viral origin that denote ‘danger’. Dysregulation in the mechanisms governing alternative immune outcomes is likely to manifest as infertility, or inadequate protection from infectious disease. The prospects for therapeutic intervention to manipulate the uterine immune environment will become clearer as a deeper knowledge is acquired of the interactions between different effector and regulatory T-lymphocyte populations in the uterus, and the key roles of cytokines in regulating each phase of their induction and function.

S. A. Robertson is supported by a Research Fellowship and Project Grants from the NH and MRC of Australia.

References

Key references are indicated by asterisks.

Bendelac A, Rivera MN, Park SH and Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function Annual Review of Immunology 15 535–562

Bilyk N and Holt PG (1995) Cytokine modulation of the immunosuppressive phenotype of pulmonary alveolar macrophage populations Immunology 86 231–237

Bulmer JM, Morrison L and Smith JC (1988) Expression of class II MHC gene products by macrophages in human uteroplacental tissue Immunology 63 707–714

Burrows TD, King A, Loke YW (1994) Expression of adhesion molecules by endovascular trophoblast and decidual endothelial cells: implications for vascular invasion during implantation Placenta 15 21–33

Calcines PW, Bhan AK, Landau SR, Yang L, Balk SP and Blumberg RS (1993) Tissue distribution of the non-polymorphic major histocompatibility complex class I-like molecule, CD1d Immunology 80 561–565

Christmas SE and Meager A (1990) Production of interferon-gamma and tumour necrosis factor-alpha by human T-cell clones expressing different forms of the gamma delta receptor Immunology 71 486–492

Clark DA, Merali FS, Hoskin DW, Steel Norwood D, Arck PC, Croitoru K, Murgita RA and Hirte H (1997) Decidua-associated suppressor cells in abortion-prone DBA/2-mated CBA/J mice that release bioactive transforming growth factor beta2-related immunosuppressive molecules express a bone marrow-derived natural suppressor cell marker and gamma delta T-cell receptor Biology of Reproduction 56 1351–1360

Clark DA, Chaouat G, Arck PC, Mittweckner HW and Levy GA (1998) Cytokine-dependent abortion in CBA × DBA/2 mice is mediated by the procoagulant fgl2 prothombinase Journal of Immunology 160 545–549

*Constant SL and Bottomly K (1997) Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches Annual Review of Immunology 15 297–322

Head JR and Gaede SD (1986) La antigen expression in the rat uterus Journal of Reproductive Immunology 9 137–153

Hunt JS, Vassmer D, Ferguson TA and Miller L (1997b) Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus Journal of Immunology 158 4122–4128

Letterio JJ and Roberts AB (1998) Regulation of immune responses by TGF-beta Annual Review of Immunology 16 137–161

McMaster MT, Newton RC, Dey SK and Andrews GK (1992) Activation and distribution of inflammatory cells in the mouse uterus during the pre-implantation period Journal of Immunology 148 1699–1705

Mayer L (1997) Regulation of mucosal immune responses: distinct antigens and antigen presenting cells Journal of Clinical Immunology 17 349–353

Mountford TR and Sad S (1996) The expanding universe of T-cell subsets. Th1, Th2 and more Immunology Today 17 138–146

*Raphaelity R (1997) Th1-type immunity is incompatible with successful pregnancy Immunology Today 18 478–482

Roberts SA, Mau VJ, Tremellen KP and Seaman FK (1996a) Role of high molecular weight seminal vesicle proteins in eliciting the uterine inflammatory response to semen in mice Journal of Reproduction and Fertility 107 265–277

Seder RA and Paul WE (1994) Acquisition of lymphokine-producing phenotype by CD4+ T cells Annual Review of Immunology 12 635–673

Tamada H, McMaster MT, Flanders KC, Andrews GK and Dey SK (1990) Cell-type specific expression of transforming growth factor-B1 in the mouse uterus during the perimplantation period Molecular Endocrinology 4 965–972

Whitelaw PF and Croy BA (1996) Granulated lymphocytes of pregnancy Placenta 17 533–543

